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Decoding the Matrix
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High-dimensional, low-
sample-size scenarios
(e.g., financial datasets,
machine learning) pose
unique statistical
challenges and exhibit
distinct properties for

covariance matrices.
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Assume a few key drivers
dominate market covariance.
Spectral decomposition of
the sample return data's

covariance matrix yields:

» Eigenvalues and
eigenvectors representing

market structure

Two key metrics derived from

this process:

1. Fraction of variance
explained by the leading

eigenvector.
2. Average pairwise correlation.
Key question:

What is the relationship
between these metrics, and

why is it important?
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Empirical Test

MARKETS STEPS

Daily returns for constituent stocks

of the US S&P 500 and China CS/ 1. One year's worth of daily returns were used to estimate covariance.

300. 2. The fraction of variance explained by the leading eigenvector was
calculated.
DTS (el 3. The average correlation among all pairs of constituent stock returns was

2000/01/01 — 2023/12/31 computed.

4. This process was repeated for each subsequent year, comparing the
fraction of variance explained by the leading eigenvector with the average
correlation for each year.




.8 The US S&P 500 Constituents

A Linear Relationship between the Two Metrics
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-8 China CSI 300 Constituents

A Linear Relationship between the Two Metrics
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. Simulation Test

Fraction of Variance Explained by Leading Eigenvector & Average Correlation Relationship



Simulation Test

A strong relationship between the fraction of variance explained by the leading eigenvector and the average correlation has been observed. An analysis on this is, in
one-factor model:

1 =Bif +€

Under assumptions: E(€;) = 0,E(e;f) = 0 and E(eiej) = 0, the formula for correlation p(i, j) between securities i and j becomes:

. BiBjo?
p(i,j) = =
Jﬁl?az + 61-2\/,81-202 + §;°
When @ exposures to the factor, g have low dispersion and are equal to 1//p
(2 specific variances are identical
- a’/p
P~ —
— 4+ 62
p
T 02+pb2

p - number of securities

Next Pages:

Simulate scenarios (1) and (2) to test effect on relationship between average correlation p(i, j) and Fraction of Variance Explained

by the leading eigenvector.




One-factor Simulation Setup

In one-factor model:

1= Bif t€

Simulate 500 securities with 252 returns,
Simulate f in normal distribution, shape 1 x 252, u¢ =0, of = 0.16/v252
@ Simulate g in normal distribution, shape 500 x 1, ug = 1, g from 0.25 to 0.05, § becoming less dispersed.

@ Simulate € in normal distribution, shape 500 x 252, u. =0, g, from 0.5/v/252 to 0.1/4/252, e becoming less
dispersed, 52 becoming more identical.

Each setup is experimented 30 times to create box plots



-8 Simulation Result

Relationship between Fraction of Variance Explained by the Leading Eigenvector and Average Correlation in a controlled environment
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4 Simulation Result: Reducing Beta Dispersion

When reducing beta dispersion, diff decreases
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Diff

Simulation Result: Reducing Beta Dispersion
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What’s Next:

Estimate Correlation Matrix
with Different Numbers of Factors

Fraction of Variance Explained by Leading Eigenvector & Average Correlation Relationship



Estimating Correlation Matrix

Note: Steps to estimate the sample correlation matrix

1. Assuming that a few key drivers account for most of the market 5. Estimate diagonal terms on matrix g using a heterogeneous or a
correlation, let's suppose the S&P 500 stock returns data follow a factor

model.

homogeneous specific variance matrix.
(D Heterogeneous specific variance estimation (credit to Alex Bernstein):
2. Center returns data to mean zero and compute p x p sample covariance

matrix S from daily returns data.

3. Spectral decomposition of the covariance matrix: diag(g) = diag| S —

k
T
Aivi V;

The sample covariance matrix S can be decomposed into its eigenvalues and

=1

eigenvectors:
p (@ Homogeneous specific variance estimation:
S = z )\il?il?i-r
. n
i=1 52 — <_> 32
p

where A; are the eigenvalues and v; are the corresponding eigenvectors of S. ,
i g Vi p g eig dlag(g) — 621

These eigenvalues are sorted such that ; > 4, = -+ = 4, = 0.

4. Use k factors to estimate covariance and replace the small components 2 - .
£% — Average of remaining non—-zero eigenvalues

with matrix g. . .
I — Identity matrix

k
_ T
S= Z Avivg + g 6. Convert the estimated covariance matrix to a correlation matrix by
i=1

dividing means of variances.



.4 Changing factor number to estimate sample correlation matrix

Sample Correlation Matrix

Estimating Sample Correlation Matrix with Different Numbers of Factors —
Heterogeneous specific variance
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The average correlation remains largely unchanged after estimating the correlation matrix

with 4 factors
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.4 Changing factor number to estimate LW target constant correlation matrix

LW Target Constant Correlation Matrix

Estimating LW Target Constant Correlation Matrix with Different Estimating LW Target Constant Correlation Matrix with Different
Numbers of Factors - Heterogeneous specific variance Numbers of Factors - Homogeneous specific variance
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.4 Changing factor number to estimate LW target constant correlation matrix

LW Estimator Matrix

Estimating LW Estimator Matrix with Different Numbers of Factors -
Heterogeneous specific variance
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