Spectral Properties of Sample Covariance Matrices

Relationship Between Variance Concentration & Average Correlation

September **2024**

Decoding the Matrix

High-dimensional, lowsample-size scenarios (e.g., financial datasets, machine learning) pose unique statistical challenges and exhibit distinct properties for covariance matrices.

<u>қ л</u> **ZN**

品

Assume a few key drivers dominate market covariance. Spectral decomposition of the sample return data's covariance matrix yields:

• Eigenvalues and eigenvectors representing market structure

Two key metrics derived from this process:

- 1. Fraction of variance explained by the leading eigenvector.
- 2. Average pairwise correlation.

Key question:

What is the relationship between these metrics, and why is it important?

Empirical Test

MARKETS

Daily returns for constituent stocks of *the US S&P 500 and China CSI 300*.

DATE RANGE

2000/01/01 – 2023/12/31

STEPS

- 1. One year's worth of daily returns were used to estimate covariance.
- 2. The fraction of variance explained by the leading eigenvector was calculated.
- 3. The average correlation among all pairs of constituent stock returns was computed.
- 4. This process was repeated for each subsequent year, comparing the fraction of variance explained by the leading eigenvector with the average correlation for each year.

The US S&P 500 Constituents

China CSI 300 Constituents

A strong relationship between the fraction of variance explained by the leading eigenvector and the average correlation has been observed. An analysis on this is, in one-factor model:

 $r_i = \beta_i f + \epsilon_i$

Under assumptions: $E(\epsilon_i) = 0$, $E(\epsilon_i f) = 0$ and $E(\epsilon_i \epsilon_j) = 0$, the formula for correlation $\rho(i,j)$ between securities *i* and *j* becomes:

$$
\rho(i,j) = \frac{\beta_i \beta_j \sigma^2}{\sqrt{\beta_i^2 \sigma^2 + {\delta_i}^2} \sqrt{\beta_j^2 \sigma^2 + {\delta_j}^2}}
$$

When Ω exposures to the factor, β have low dispersion and are equal to $1/\sqrt{p}$

② specific variances are identical

$$
\rho(i,j) \approx \frac{\sigma^2/p}{\frac{\sigma^2}{p} + \delta^2}
$$

$$
= \frac{\sigma^2}{\sigma^2 + p\delta^2}
$$

 p - number of securities

Next Pages:

Simulate scenarios (1) and (2) to test effect on relationship between average correlation $\bar{\rho}(i,j)$ and Fraction of Variance Explained by the leading eigenvector.

One-factor Simulation Setup

In one-factor model: $r_i = \beta_i f + \epsilon_i$

Simulate 500 securities with 252 returns,

Simulate *f* in normal distribution, shape 1 x 252, $\mu_f = 0$, $\sigma_f = 0.16/\sqrt{252}$

(1) Simulate β in normal distribution, shape 500 x 1, μ_B = 1, σ_B from 0.25 to 0.05, β becoming less dispersed.

(2) Simulate ϵ in normal distribution, shape 500 x 252, $\mu_{\epsilon} = 0$, σ_{ϵ} from 0.5/ $\sqrt{252}$ to 0.1/ $\sqrt{252}$, e becoming less dispersed, δ^2 becoming more identical.

Each setup is experimented 30 times to create box plots

Relationship between Fraction of Variance Explained by the Leading Eigenvector and Average Correlation in a controlled environment

Simulation Result: Reducing Beta Dispersion

Simulation Result: Reducing Beta Dispersion

What's Next:

Estimate Correlation Matrix with Different Numbers of Factors

Estimating Correlation Matrix

Note: Steps to estimate the sample correlation matrix

- **1. Assuming that a few key drivers account for most of the market correlation, let's suppose the S&P 500 stock returns data follow a factor model.**
- **2.** Center returns data to mean zero and compute $p \times p$ sample covariance **matrix from daily returns data.**
- **3. Spectral decomposition of the covariance matrix:** The sample covariance matrix S can be decomposed into its eigenvalues and eigenvectors:

$$
S = \sum_{i=1}^p \lambda_i v_i v_i^\top
$$

where λ_i are the eigenvalues and v_i are the corresponding eigenvectors of S. These eigenvalues are sorted such that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_p \geq 0$.

4. Use factors to estimate covariance and replace the small components with matrix g.

$$
S = \sum_{i=1}^{k} \lambda_i v_i v_i^{\top} + g
$$

- **5. Estimate diagonal terms on matrix using a heterogeneous or a homogeneous specific variance matrix.**
	- ① Heterogeneous specific variance estimation (credit to Alex Bernstein):

$$
diag(g) = diag\left(S - \sum_{i=1}^{k} \lambda_i v_i v_i^{\mathsf{T}}\right)
$$

② Homogeneous specific variance estimation:

$$
\delta^2 = \left(\frac{n}{p}\right)\ell^2
$$

$$
diag(g) = \delta^2 I
$$

 l^2 − Average of remaining non-zero eigenvalues

− Identity matrix

6. Convert the estimated covariance matrix to a correlation matrix by dividing means of variances.

Changing factor number to estimate sample correlation matrix

Sample Correlation Matrix

The average correlation remains largely unchanged after estimating the correlation matrix with 4 factors

Estimating Sample Correlation Matrix with Different Numbers of Factors -Homogeneous specific variance

Changing factor number to estimate LW target constant correlation matrix

LW Target Constant Correlation Matrix

Estimating LW Target Constant Correlation Matrix with Different Numbers of Factors - Heterogeneous specific variance 0.2 0.15 0.1 0.05 Diff Ω -0.05 -0.1 -0.15 -0.2 \Box 1 Factor 2 Factors \Box 4 Factors \Box 8 Factors \Box 16 Factors \Box 32 Factors \Box 64 Factors 128 Factors 256 Factors Sample Corr n: 249 p:497 n: 249 p:497

Changing factor number to estimate LW target constant correlation matrix

LW Estimator Matrix

Estimating LW Estimator Matrix with Different Numbers of Factors -Homogeneous specific variance

Goldberg, L. R., Papanicolaou, A. & Shkolnik, A. (2022), 'The dispersion bias', *SIAM Journal on Financial Mathematics, 13* (2), 521–550.

Ledoit, O. & Wolf, M. (2004), 'Honey, I shrunk the sample covariance matrix', *The Journal of Portfolio Management, 30*, 110–119.